導出:
- false-elim = initial : ⊥ → P
- true-intro = final : P → T
- forall-elim = instantiate = projection : ∀x∈X.P(x) → P(a)
- exists-intro = uninstantiate = injection : P(a) → ∃x∈X.P(x)
リーズニング:
- Forall-Intro-Right :: (x∈X. φ(x):A→P(x)) ⇒ (A → ∀x∈X.P(x))
- Exists-Intro-Left :: (x∈X. φ(x):P(x)→B) ⇒ (∃x∈X.P(x) → B)
- Imp-Intro :: (A, B → C) ⇒ (A → C<*B)
- Imp-Elim :: (A → C<*B) ⇒ (A, B → C)
- Comp :: (Γ → Δ), (Δ → Σ) ⇒ (Γ → Σ)
- Not-Intro :: (Γ, A → ⊥) ⇒ (Γ → ¬A)
- Not-Elim :: (Γ → ¬A) ⇒ (Γ , A → ⊥)
ブロック(ボックス):
キーワード | 短縮 | 意味 |
---|---|---|
sequence | seq | Compの連続 |
conjunction | conj | Forall-Intro-Right |
disjunction | disj | Exists-Intro-Left |
implication | imp | Imp-Intro |
application | app | Imp-Elim |
absurd | abs | Not-Intro |
contradict | contr | Not-Elim |
テキスト化の例(まだ未定):
begin implication postulate A assume B ... C end implicatin Now we have A → (C < B)
begin sequence postilate ∀x∈X.P(x) by instantiate[X, P, a] P(a) --(1) by premise P12 P(a) > B --(2) from 1, 2 by MP B end sequence Now we have ∀x∈X.P(x) → B